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electro-optic absorption using the EMA will appear
in a future publication.'® Some changes from the
present results (obtained using the Franz-Keldish
theory) have been calculated.'® It might be possible
that one could use a less-strict condition by con-
sidering L as the mean free path in a crystal in-
stead of its length. This matter is now under in-
vestigation. The second condition (C 2) restricts
the range of energy for which the EMA can be ap-
plied. It has a simple form and can easily be
checked. A similar criterion appears for the im-
purity problem?® and for the case of a crystal in a
constant magnetic field.* In the case of a constant
magnetic field, however, this restriction is usually
ignored in calculating the optical magnetoabsorp-
tion.'® The condition (C 2) gives also a better qual-
itative understanding why the EMA cannot be used
for the case of an infinite crystal in a constant elec-

tric field: It is clear that as the number of nodes
of the eigenfunctions increases, the smallest “peri-
od” decreases (see the expression for Ax, above)
and the number of Fourier terms needed to repre-
sent the function increases. For an infinite crys-
tal, this “period” goes to zero and thus the function
cannot be developed in a finite number of terms
anymore.

Let us stress again that while for the infinite
crystal there is no justification to use the EMA,
this approximation was shown to be applicable to
real (finite) crystals under conditions (C 1) and (C 2).
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The hydrodynamic theory of the electron gas, first applied to surface plasmons in metals
by Ritchie, is critically examined using the equation of motion for the Wigner distribution
function in the random-phase approximation (RPA). It is found that the theory does not agree
with the RPA in the case of surface plasmons, though it does for bulk plasmons.

I. INTRODUCTION

In deriving the dispersion relation of surface
plasmons in metals, several authors!~® have used
the hydrodynamical equations for a charged fluid.
While one may view with some suspicion the appli-

cation of these equations to the so-called “collision-
less” region, it is nevertheless true that the wave-
vector dependence of the bulk-plasmon frequency,
calculated by the hydrodynamic theory, is in ap-
parent agreement with the prediction of the random-
phase approximation (RPA),* to the lowest order
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in k¥2/k%. In addition, the lowest-order correction
term in the surface-plasmon dispersion relation
is approximately the same as that obtained via an
exact solution of the collisionless Boltzmann equa-
tion for the case of a sharp metal-vacuum inter-
face.®

The present paper constitutes a critical examina-
tion of the hydrodynamic theory, taking as a start-
ing point the RPA equation of motion for the Wigner
distribution function. It will be shown that an
ansatz for the pressure tensor, which is introduced
to reduce the hydrodynamic equations to a single
equation for the density fluctuation, is valid only
when the density fluctuation is spatially slowly
varying. This condition is satisfied for long-wave-
length bulk plasmons but it is not satisfied for
surface plasmons.

Agreement between the hydrodynamical theory
and the exact calculation of Wagner® is somewhat
misleading since it relies on the assumption that
a parameter g (which is undetermined by the hydro-
dynamic theory) is the same for both bulk and sur-
face plasmons. Moreover, the model of the metal
surface employed in both calculations is valid only
if the detailed behavior of fluctuations in the dis-
tribution function is unimportant within a distance
~ k3 of the plane surface. For the surface plas-
mon, this condition is not satisfied and we must
conclude that a more careful treatment of the static
surface charge density is necessary.

II. HYDRODYNAMIC THEORY

The hydrodynamic equations for a charged fluid
are most easily derived from the collisionless
Boltzmann equation (or Vlasov equation) for the
Wigner distribution function of the system. We
have

5 DV . - - - o=
3*f+p m E f(py R9 t): Ve Ue“(R7 t)' fo(p’ R, t) 3
(2.1)
where the Wigner distribution function is given, in
terms of the single-particle Green’s function, by

AB, R )= [dTe® TG(R+1iF, b, R- 17,0, (2.2)
and the local effective field is defined by
Ue(f(ﬁ’ t) = Uext(ﬁ’ t) + ezf dRI n(R Et) . (2. 3)
The density of particles is
- an . -
n(R, t)=f(%5 FB,R, 1. (2.9

In metallic surface problems, the externally im-
posed field U, (R, #) can be taken to represent the
effect of a static ionic charge background, - eN,(R)
(e<0), against which the electrons are free to
move. It is then often more convenient to write
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(2. 3) in differential form
Vte(t (ﬁy t) == 47Te2 [n(ﬁ, t) - No(ﬁ)] . (2. 5)

It is not obvious that the collisionless Boltzmann
equation is applicable to inhomogeneous systems
where the distribution function varies rapidly in
space. This question is discussed in Sec. III.
Taking the zero and first moments of (2. 1), one
easily derives the familiar equations for the so-
called local hydrodynamic variables, namely,

a%n(R H+Ve - [n(@®, AR, 1)]=0, (2. 6)
mn(R, t)< +U(R, #)- v)u(R 1) =n(®, HFR, ¢)

-Ve- TR, 2.7
where
- p
A& 0 -fz—)sm B R, (2.8)
FR, )= - VU, (R, 1), (2.9)

L dp g_*@_‘ . =
(R, t)_m/W <m u> el f(p, R, ). (2.10)
We wish to consider small deviations from equilib-

rium described by the infinitesimal fluctuation in
the Wigner distribution function

6f(B, R, N =F(D, R, 1) - fo(P, R) . (2.11)

Linearizing (2. 6) and (2.7) in infinitesimals and
assuming that Gy(R)=0 we have the basic equations
of the hydrodynamic theory,

> on(®, 1)+ T - [ @6E(E, )] =0, (2.12)
mng(R) 3% 6u(R, #)=ny(R)SF(R, #)
+FyR)on(R, 1) - V- 6T(R, ¢) . (2.13)

We note explicitly the definitions of 611(R, ) and
sF(R, 1),

- 1 dp e - =
oII(R, l‘)-m/(—zT)gpp(Sf(p, R, 1), (2.14a)
6F(R, 1)=- Vo U,y (R, 1)
_ = on(R’, 1)
e VR/dR I_HT . (2.14b)

In order to form a closed set of equations it is
customary to make an ansatz linking the pressure-
tensor fluctuation 811 with the density fluctuation
o6n, namely,
Ve SI(R, ¢)

=mpVpon(R, 1), (2.15)
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where 8 is an undetermined constant.

For a truly hydrodynamic mode, where the dis-
tribution function is of the local equilibrium form,
(2. 15) is trivally satisfied since (for zero-tempera-
ture fermions)

SII(R, ¢) = imoion(R, )1 , (2.16)

where vy is the Fermi velocity. In such a case the
fluctuation in the Wigner function is of the form

- = - - = 3

8f(p, R, t)=[p- U(R, ¢) - (R, t)]ge— fle,), (2.17)
14

where f(e,) is the normalized Fermi function, ¢,
=p%/2m, and 6u(R, ) is the fluctuation in the local
chemical potential. With the aid of the ansatz
(2.15), Egs. (2.12) and (2. 13) reduce to a single
differential equation for the density fluctuation,

32

mz 5n(R, )= = Vg + [ngRSF(R, t) + Fo(R)on (R, 1)]
(2.18)

In a region of constant electron density, (2.18) has
the simple solution

+mpPvion(R, ¢) .

6n(R, t)=onel ® R-wt) (2.19)
provided that
wi=wi+ B, (2. 20)

where
wi=4me?/m .

Equation (2. 20) is the dispersion relation of bulk
plasmons and agrees with that obtained from micro-
scopic theory* if one makes the identification

=24 . (2.21)

We note that this value of g8 is not the same as that
predicted by (2.16). This is no surprise since the
bulk plasmon is not a hydrodynamic mode and is
accompanied by a fluctuation in the Wigner distri-
bution function which has a form® quite different
from that given by (2. 17).

In order to describe surface modes it is neces-
sary to construct a model of the metal surface.
A simple and extensively exploited model amounts
to representing the equilibrium electronic and
ionic densities by step functions,

ny(R) = Ny(R)=n0(Z) . (2.22)

According to (2. 3) this assumption implies that
-I‘.‘o(ﬁ)=0, so there is no surface charge dipole, and
the metal is bound only by exchange and correlation
potentials. This is possible’ only for 7,23 (7,
=Wigner-Seitz radius). Within the model implied
by (2.22), Eq. (2.18) becomes, for Z>0,

Ve 6F(R, )+ p2v2on(R, 1) . (2.23)
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With the aid of (2.5) it is easy to see that the solu-
tion of this equation which oscillates in the (X, Y)
direction and vanishes at Z=+x is

Gn(ﬁ, ) =6ne" "% ¢t (& Ry~ wt) , (2. 24)

where
V2= (0] - 0?+ g0/ 8

and &, is the wave vector parallel to the surface.
To ensure that electrons do not escape from the
half-plane one must impose the boundary condition
that the fluid velocity in the Z direction vanishes
as Z-0" that is,

(R, 1)] 5.0+=0 . (2. 25)

Using (2. 25) in the local velocity equation (2.13),
it is easy to obtain the dispersion relation of sur-
face plasmons,

w?=wip[1+ (Bl wsp) +O(K/ wie)] , (2.26)
where wgp =w,/V2 is the zero-wave-vector surface-
plasmon frequency.

It is customary to use the value of g given by
(2.21) in order to estimate the contribution of the
linear correction term, although thereisno a priori
reason for so doing. The magnitude of the constant
multiplying &, then agrees with the value obtained by
Wagner,® who solved Eq. (1) exactly using the
same model and employing the boundary condition
of specular reflection at the surface.

Having outlined the hydrodynamical theory, we
now turn to the RPA equations and examine the
circumstances under which they support the crucial
assumption (2. 15).

III. RPA EQUATION OF MOTION

The basic equation we will use is derived in Ref.
6, Chap. 7 [Eq. (7.6)] and may be written

- -

9 . - - Y > By

Xf(ﬁr’ ﬁ’ t)Uaff<§+R_’t) ’ (3-1)

where U, (R, ?) is given by (2.3). The application
of this equation to the problem of surface collective
modes has been described in detail by Griffin and
the author.®® With the assumption that the equilib-
rium system is spatially inhomogeneous only in the
Z direction and that propagating surface modes are
described by the distribution function

-

F(B, R, 1)=£o(D, 2)+6f(D, Z)e! T Ru-wt> (3 )

Eq. (3.1) leads to the following linearized equation
for 8£(p, Z):
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(“"pmm) of(F, 2)=- 0% 37 0115, 2 +2’de f(z Gooys sinl(B' =)« R/]et Rz

Xfo(P Z)5U9“<Z+ >+21de f

Equation (3. 3) may be used to derive an expression
for the surface-plasmon dispersion relation, making
no assumption about the static Wigner function and
the static self-consistent field U%,(Z) other than
that they reach values characteristic of the bulk
(vacuum) for Z>56(Z<6), where & is a “skin-depth”
parameter of order k;!. One may then show® that

w?=wip[1+Ak, +O(%/RE)] , (3.4)

where

A=lim(-/;°
Ry-0\J "%

az ZGn(Z)/[: az Gn(Z))

+[‘:azz[n‘,(z)-ﬁ(—:’(z)]- (3.5)

Here, on(Z)=[[dp/(2n)%)6f(D, Z) is the density
fluctuation associated with the surface plasmon.
1t is clear from the form of (3.5) that the value of
A may be quite sensitive to the exact form of the
density fluctuation, which must be obtained by
solving the equation of motion (3. 3).

In order to reduce (3. 3) to more manageable
proportions we note that the fluctuation potential
satisfies (2.5), so that

6Uoge(Z) = (21€2/R,) [ dZ' e™'Z -7 '5n(Z") . (3.6)

The variation of 6 U,,,(Z) in Z is thus governed by
e™*1'Z! " and a Taylor expansion of the exponential

in (3. 6) leads to a power series in k,5, where &
J

-

( _ p..r; k..> 8/(5, 2)==K\* ¥, fol, 200 Upee(2) +

The validity of this approximation is verifiable only
by explicit calculation of &f(p, Z) using (3.10), and
substitution in (3. 9) to check the behavior of higher-
order derivatives. Since the coefficients of these

derivatives rapidly become very small (1,3, 5. --);

it is possible that the collisionless Boltzmann equa-
tion is a useful approximation even when the effec-
tive field is varying quite rapidly in space.

We now return to the step-function density pro-
file model of the metal surface utilized in Sec. II.
J

dpy

(Pl P, z ] u(Z*' )Gf(pm pn Z) . (3.3)

r
is the skin-depth parameter mentioned earlier.
One may retain only the first nonzero term in such

an expansion to an accuracy of order (6%,)?, that is,
EZ/k%. If in addition we write
fo(ﬁu - %En, pn Z) ‘fo(ﬁu + %En, Pn Z)

~-K,- 6pufo(ﬁm ber Z) (3.7

an approximation correct also to order k%/k%, the
term containing 6 U,.,(Z) on the right-hand side of
(3. 3) reduces to

_kn Vp fo(p, Z)b Ueu(Z)"' 1

fo(P, Z) GUe“(Z) .

(3.8)
Analogous considerations may not be used to sim-
plify the final term on the right-hand side of (3. 3)
since the static field is not slowly varying closc
to the surface. However, if one Taylor expands
U%,(Z+12') about Z, retaining all derivatives,
one can reduce this term to

(=1y
’E 0 22 (2n+1)! 8Z% 1

azn*l 2n+l

2n+1 éf(plly pn Z)

(3.9)
Provided this series converges rapidly, one is
justified in replacing the “nonlocal” term on the
right-hand side of (3. 3) by the “local” term (3. 9).
Retaining only the first term in (3. 9) leads to the
result one would obtain starting from the collision-
less Boltzmann equation, namely,

Uert(2) 5zt

fo(p, 2)5, 5Ueu(z)‘” US::(Z) of(p,)

—Z 8f(D, Z) . (3.10)

I
We recall that the equilibrium distribution function
was assumed to be

fo(B, 2)=1f(e,)0(2) . (3.11)
From the form of (3.10) it is apparent that an ap-
proximation of this kind is only justifiable if the
behavior of 6f(P, Z) close to the surface is relative-
ly unimportant. In that event, for Z>0, we may
write (3.10)

of(p, 2)= ( 0y, J1€5)0 Uy (2) + in— f(e,)azcv.n(Z))/< —%)-i&/@—%)a—%aﬂﬁ, z). (3.12)

m
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Although the formal solution of (3. 12) is simple to
write down,’ it is less simple to work with. In or-
der to exhibit the relation between (3. 12) and the
equations of the hydrodynamic theory, we adopt an
iteration procedure to relate 67(p, Z) to 6 U, (2).
That is, writing (3.12) in the symbolic form

8£(D, Z)=k + ASF(D, Z) , (3.13)

where k represents the first term on the right-hand
side and

A=_;Dle / ﬁn . l.Eu 9
A=—-i22 _Hu Zw) 9
VAN m 9z ’
we may generate a series expansion in
(w-p,- K,/ m)? by iteration:

5f=k+ A+ A% +--- . (3.14)

Integrating (3.14) over all momenta and employing
(3. 6) to link §U,.,(Z) to 6n(Z) we finally arrive at
the equation

= 8
6n(Z)=w2 23 (=1) (2n+ 1)8—"’Zy on(Z)

n=0
= 2n = ir \2n+2
x [ 4R _(Pe _M)

f 217)3 (m> f(fp)/(w m , (3- 15)
which the solution of (3.12) must satisfy. For con-
venience we take the k,=0 limit. This does not af-
fect conclusions and it enables one to simplify

(3.15) to

on(2)=25 3 (- 1y

3 ve\2 92"
o <~F—> 6n(Z). (3.16)

(2n+3)\w) 8z

Under the same conditions, the basic equation of

the hydrodynamic theory, Eq. (2.18), has the form
w? g 92

on(Z) —Z’-ﬁ 5n(z) - Y on(Z) . (3.17)

Equation (3. 17) follows from (3. 16) if one neglects

all terms on the right-hand side but the first two,
and if one makes the identification

B2 =31k wi/w? . (3.18)

For bulk plasmons (3. 18) is the same as (2. 21).
However, since g is a function of w, it will be dif-
ferent from (2. 21) for surface plasmons [see the
comment following (2. 26)]. Moreover, the hydro-
dynamic theory agrees with the RPA only if the ex-
pansion on the right-hand side of (3. 16) converges
rapidly. For bulk plasmons, 6n(Z)~ e'?*s so that
for small wave vectors this condition is satisfied,
and (3. 16) gives the RPA dispersion relation for a
bulk-plasmon mode propagating in the Z direction,
namely,

w?=wZ+3hkE+O(RY w}) . (3.19)
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However, for surface plasmons, the simple expo-
nential decay predicted by the hydrodynamic theory,
on(Z)~ e "%, where v, is given by (2. 24) with &, =0,
leads to an expansion parameter (yZvZ/w?) for the
right-hand side of (3.16). For w =wgp, thisparam-
eter is of order unity, and the expansion fails. In
fact, by rearranging the series into trigonometric
form, one can easily show that ¢ is not a solu-
tion of (3. 16) whatever the value of \. The reason
for the failure of the hydrodynamic theory is that
the ansatz (2. 15) for the pressure tensor is not cor-
rect for the surface-plasmon mode. One can show
this directly by multiplying (3.12) across by p% and
following an equivalent iteration procedure to that
outlined above. On differentiating, one obtains an
expression for (8/82) (511,,) which is in the form of
a series expansion in derivatives of 6n(Z). The
first term corresponds to the ansatz (2.15), with g
given by (3.18), but the series converges slowly
for the surface plasmon.

The considerations of the preceding paragraph
indicate that the hydrodynamical theory does not
correctly describe the physics of surface plasmons
even for the simplest possible model of the metal
surface. That Wagner’s calculation® of the linear
dispersion approximately agrees with (2. 26) [with
B given by (2. 21)] should not be regarded as signif-
icant. The reason why one would expect such agree-
ment within the framework of a half-space model
will be given in a future paper. °

As we observed earlier, the model described by
(2.22) or (3.11) is only valid when the detailed
spatial variation of §f(D, Z) or 6n(Z) close to the
surface is unimportant. However, even for the
exact calculation of Wagner, the density fluctuation
becomes very small at distances greater than v/
wsp, Which for all metals is ~k;l. Thus the fluctua-
tion in density is solely confined to a region of the
same spatial extent as the diffuseness in the static
electronic density. Insofar as application to a real
metal is concerned, the results of these model cal-
culations conflict with the assumption one must
make in constructing the model. A more detailed
discussion of half-space models and also of infinite-
barrier models is given in Ref. 10.

IV. CONCLUDING REMARKS

In this paper, it has been shown that microscopic
theory, based on the RPA, does not support the use
of Ritchie’s hydrodynamic equations!'® to calculate
dispersion relations for surface plasmons in met-
als. As shown in Sec. III, it may be possible to
approximate the RPA equation of motion (3. 1) by the
collisionless Boltzmann equation even though the
static effective field does not vary slowly in space.
The validity of this approximation is only verifiable
at the end of a calculation, when the form of
8f(D, Z) has been determined. Although the colli-
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sionless Boltzmann equation has been exactly solved
for a half-space,® one cannot apply the solution to
experimental data on metals where the surface
diffuseness has the same spatial extent as the cal-
culated density fluctuation. °

It is readily apparent that the presence of the
term containing U%,(Z) enormously complicates the
mathematical problem of solving (3.10). InWagner’s
half-space calculation, and in much of the literature
on plasma physics, this term is replaced by a
boundary condition on 6f(P, Z). As we have argued,
this procedure is not self-consistent for the case of
surface plasmons in metals. In his hydrodynami-
cal calculation of the surface-plasmon dispersion
relation, Bennett® includes the effect of the static
charge dipole, assuming that the charge density
profiles for ions and electrons are linear. How-
ever, he uses an ansatz equivalent to (2. 15) and
determines g for the surface mode by identification
with the bulk-mode dispersion relation. Neither
assumption appears to be supported by the RPA.

The estimation of correction terms in the surface-
plasmon dispersion relation would seem less sim-
ple than it may have initially appeared in earlier
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work. According to the discussion of Sec. III, the
very least one has to do is to solve Eq. (3.10) or
its equivalent, treating the surface dipole potential
U%,(2) correctly. Since electrons are subject

to effects due to changes in exchange and correla-
tion close to the surface, one may also question
whether it is sufficient to include only the electro-
static dipole potential U%,(Z). Recent calculations
by Lang and Kohn’ indicate that the contribution of
the dipole potential to the work function at “jellium”
surfaces is entirely negligible for », ~5, but be-
comes comparable with the exchange and correla-
tion contributions for 7, 2.5. One feels, there-
fore, that for small 7, it may be adequate to

treat the variation in the exchange and correlation
energy close to the surface in a relatively crude
fashion. There is no a priori reason why this
should be true for larger values of 7,.
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